Vancouver

Thales to deploy CBTC signalling for Vancouver SkyTrain extension

Thales’s Communications Based Train Control (CBTC) technology, SelTrac, will be deployed on the Millennium Line extension in Vancouver.

The signalling contract is part of the Vancouver Broadway Subway Project, which extends the SkyTrain Millennium line along the Broadway corridor.

The CA$2.83 billion ($3bn) project takes Vancouver’s iconic, fully automated SkyTrain underground beneath Broadway, as part of the redevelopment of the corridor through central Vancouver. The project is being carried out by the Broadway Subway Constructors General Partnership, a consortium led by Acciona and Ghella.

The project includes six stations and an interchange with the Canada Line at Arbutus Street and bus services to the University of British Columbia.

Dominique Gaiardo, vice president and managing director for Thales’ Urban Rail Signalling business, said the project would improve accessibility along the corridor.

“This exciting project will improve the livability and access across the vital economic and employment hub of the Broadway Corridor. Thales will continue to build local expertise and provide strong support to the city and is proud to contribute to the mass transit capacity expansion in Vancouver with the innovative SelTrac CBTC system.”

Thales and Vancouver have a significant history together, as the city was the first location for the deployment of the SelTrac system. The SelTrac signalling infrastructure supported the world’s first driverless CBTC system on the Vancouver SkyTrain Expo line. Thales has also provided signalling to the Millennium and Canada lines.

Drawing on the expertise developed in these projects and elsewhere, Thales has an urban rail signalling competence centre located in Burnaby, B.C, which will provide specialised rail signalling experts and local experience to the Broadway project.

COVID

The digital pandemic: How COVID-19 has accelerated digital rail

COVID-19 has upended many aspects of rail transport, however there are aspects of the disruption that provide an opportunity for digital transformation.

By March 23, the coronavirus (COVID-19) pandemic had hit New Zealand.

Already, the country had closed its borders to anyone who was not a New Zealand citizen or permanent resident and those who could return had to isolate for two weeks. But in late March, the way that New Zealanders would get around their cities decidedly changed.

On March 25, Prime Minister Jacinda Ardern announced the country had moved to alert level four. This meant that New Zealanders could not leave their homes unless for essential services and in Auckland, the public transport network reduced to weekend level services.

Callum McLeod, who is in charge of Auckland Transport’s web presence, mobile app and journey planner, could see that there were still passengers making use of the network.

“There were still Aucklanders that needed to travel for essential purposes, be that workers in health care, people travelling to the doctor or the pharmacy, or even just getting their groceries in areas that had limited other options for transportation. We knew that these customers were wondering, ‘How do I travel and get to where I need to go while still being safe?’”

Physical distancing measures applied by that point required people to keep a distance of at least two metres between themselves and others, and this applied to public transport as well. McLeod understood that passengers wanted to know whether there was enough room on the buses, trains, and ferries that were still operating before they got on. Luckily, McLeod and his team had a solution.

“We had bus occupancy information available internally, as an operational tool, for about the last year or so, and we’d been using that to manage patronage and understand where certain routes might be getting a little busy.”

Up until then, however, that information was not available to passengers. Seeing how critical this information was, the team of software developers at Auckland Transport got to work.

“We’d been doing some design exploration, but we hadn’t intended to launch it as quickly as we did. Given the situation we pulled the team together and over the course of about a week implemented the capability to display occupancy data that from our real time streams and then present that in a way to the customer that made sense,” said McLeod.

While the Auckland Transport app had previously categorised capacity in terms of many seats, few seats, and standing room only, this needed to change for the COVID-19 reality, said McLeod.

“In the context of COVID-19, this function became even more important and it became less about needing a seat and more, ‘Can I travel while keeping enough distance between myself and others?’”

The system, initially rolled out for buses, was based upon passengers tagging on and off with their Hop travel cards. Every nine seconds, that information is transmitted back to Auckland Transport, along with the bus’s location, determined by GPS. With the system up and running for buses, the time came for it to be deployed for trains as well, however a different method of collecting data had to be used.

“With our trains the tag on, tag off point is at the station level, it’s not on the train itself, so we weren’t able to use that information. But what we do have on our trains is automatic passenger counters in each of the doors and we’ve been using that historically for boarding and unboarding patronage,” said McLeod.

Similar to the deployment of the bus information in the AT App, a development cycle that was expected to take many months was compressed down to a week.

“We worked with CAF, who build and maintain our trains, to build and install that software update across all of the train units over the course of a week. Then we used the same model on the backend to turn that boarding and off counts into the appropriate category – empty, few seats available – and that fed in automatically to AT Mobile.”

With the programming now in place, Auckland Transport have updated display boards at stations and stops and expect the solution to be one of a number of permanent upgrades to service delivery.

Thales is working on a suite of measures that are designed to help operators overcome the disruptions of COVID-19.

A DIGITAL SANDBOX
While transport authorities the world over have had to make rapid responses to the COVID-19 pandemic, and associated lockdown and distancing measures, it has also been an opportunity for experiments. In particular, as Elias Barakat, general manager, ground transportation systems at Thales outlines, operators are looking for ways to get passengers safely back on public transportation systems.

“As the restrictions are eased off slowly, operators need to be putting measures in place to actually try and reduce the risk of COVID-19 transmissions.”

Barakat highlights that data will be a key resource for operators.

“The data that they need to manage patronage and provide a safe transport environment are things like crowding on trains, crowding on platforms, adherence to distancing rules and hygiene requirements.”

Just as important as the data itself, however, is how it can be used to manage the perceptions that commuters will have of how safe the service is.

Being able to source data from multiple different points is also important. Sources of this data include ticketing gates and CCTV systems.

“When passengers arrive at a station and they find overcrowding, they’re not going to feel safe and they’re going to avoid using public transport,” said Barakat. “Passenger crowding and passenger flow analytics are becoming more important in terms of the data that public transport authorities need to gather and use to try and control crowding on platforms and trains.”

“We have had positive reviews and social posts. One of them was ‘The latest feature on how full the bus is helps me with physical distancing. Thank you, AT.’ Another was, ‘Finally Auckland Transport added capacity checking for their buses. No more waiting at the stop only to have a full bus pass you by.’”

Already public transport operators in Australasia are having to deal with patronage levels that are at the upper end of what is permissible under physical distancing regimes. Using data to enable customers to make choices about when to travel is one area that McLeod is looking to explore.

“We’ve been looking at how we can use the occupancy information in broad ways. We are trying to work out how we do it at an agency level or route level, and show the occupancy levels across the day, particularly in our peak service periods. If we can break that down into 15 minute buckets and show that before 6.30am there’s plenty of room, it starts to ramp up and then ramp back down after the peak, that can help people make decisions about when they can travel, and allow them to shift their behaviours to maintain their safe distance.”

In other contexts where the wearing of masks is mandatory on public transport, Thales has deployed its facial recognition technology using CCTV feeds.

“We have systems that perfom data analytics to do facial recognition and detect whether some people are not wearing mask and highlight that to the operator in the operations control centre. Thales has solutions where we can do video analytics to measure the separation between crowds on the platforms and similarly on the trains themselves, to make sure that people are not sitting in seats next to each other and not standing next to each other in breach of social distancing rules” said Barakat.

These data feeds can then be configured to trigger an automated response.

“As soon as a facial recognition algorithm does the facial analysis and they discover someone is not wearing a mask, that would come up as an alarm in the control centre and you can automatically contact that person through an automated warning communicated via the PA system,” said Barakat.

Barakat highlights that as much as these technologies enforce physical distancing at an individual level, the deployment of such technologies can assure other passengers that the service is safe.

DATA DEPLOYMENT IN OPERATIONS AND MANUFACTURING
Just as important as keeping passengers safe is ensuring that the public transport workforce is safe as well. Reducing the number of hours on site via predictive intelligent asset management and maintenance can reduce the risk of staff infections and subsequent disruptions to the workforce. One tool that is enabling operators as well as equipment manufacturers to be able to flexibly respond to these requirements are virtual twins. Prashanth Mysore global strategic business development and industry marketing director at Dassault Systèmes, highlights how virtual twins are being adopted.

“We’re seeing a surge in an adoption of technologies such as virtual twin experience to automate factories and operations, so they can be more flexible and agile.”

With much of the workforce encouraged to continue working from home, cloud-based platforms are providing businesses continuity.

“Virtual twin experience provides a way to interact, collaborate, and control the real-world operation while remotely working,” said Mysore.

In product design, digital twins can be used to recalibrate designs to accommodate physical distancing measures, while also virtually testing the spread of diseases within confined environments such as a rail carriage.

“There is an increasing adoption of simulations of design for safety, for example railcoach designs and cabin designs are using this widest propagation simulation technology to better design for safety,” said Mysore.

Working with a model-based design on a virtual platform can allow for the rapid altering of existing products.

“Model-based design will really give a lot of flexibility in implementing concepts such as scientific simulation models that really helps with adopting those safety principles,” said Mysore.

Dassault Systèmes SIMULIA technology shows how particles are distributed during a simulation of a sneeze in order to design and create better personal protection equipment.

UPDATING DIGITAL TRANSFORMATION
While it is too early to definitively state what aspects of our lives have been permanently changed by the COVID-19 pandemic, Barakat sees a shift in how willing passengers may be to have their movements captured as data, and how disposed operators will be to apply the collected data.

“What we are finding now with COVID-19 is that, because it’s about the personal safety of each passenger, including their own, commuters seem to be more accepting of CCTV data being captured and analysed to detect safety breaches,” he said.

One area where passenger data could be used more, highlighted Mysore, is in workforce planning and schedule optimisation.

“For the transportation sector more frequent workforce planning is needed in order to have your business continue amid the developing norms of social distancing and minimal workforce availability. Platforms have the capability to focus on scheduling agility. To accommodate disruptions, you need to have workforce planning agility and the scheduling agility, both on the production side and the operations side.”

In order to reduce crowding at the station and on carriages, Barakat foresees an appetite for more integrated transport management.

“What could be improved is interconnectivity between multimodal transport and ensuring that the timetables are coherent so that when a ferry or a bus arrives at a hub there’s a train ready within a few minutes so that you reduce the dwell time of the passengers.

With reduced patronage during this period of COVID, operators need to maintain a reasonable level of train and public transport operations, so by having an intelligence train management system you can have time table management in real time to deal with passenger flow unpredictability as commuters stagger their working hours and balance work from home and work from the office.”

Thales to support NSW digital strategy

Global technology provider and rail signalling manufacturer Thales will develop a leading digital control, communication, and signalling centre in Sydney.

The announcement follows Premier Gladys Berejiklian’s $1.6 billion Digital Restart Fund which aims to make NSW the digital capital of the southern hemisphere.

Thales Australia CEO Chris Jenkins said that the announcement enables Thales to commit to basing its digital innovation in Sydney.

“This is incredibly exciting for the many innovative companies operating in this state. To back the NSW ambition, we are committed to establishing a digital innovation lab in western Sydney to develop digital solutions for public transport,” said Jenkins.

Thales supplies digital transport systems to Sydney Metro and has supplied telemetry solutions to Sydney Trains.

Jenkins said that Thales would be drawing on its global expertise and tailoring the solutions to the needs of NSW and Transport for NSW, focusing on Metro, light rail, transport cyber security, and digital rail signalling.

“The Digital Innovation Lab will continue to grow smart jobs in western Sydney, enhancing our existing team of world-class engineers and software developers already based in our Transport business.”

NSW Treasurer Dominic Perrottet said that investment in digital technology would drive the state’s economy.

“This record investment in technology recognises that digital infrastructure is as important as transport infrastructure to the State’s economic growth.

“We must be fast followers in the Digital Revolution to accelerate agility, lift productivity and generate the jobs of tomorrow.”

The $1.6bn in funding also includes $240 million to enhance NSW’s cyber security capability, the biggest single investment in cyber security in Australia’s history, said Minister for Customer Service Victor Dominello.

Cyber security is also a focus for Thales.

“It’s never been more important that our public transport systems are protected with the highest levels of cyber security, which Thales delivers to public transport operators around the world,” said Jenkins.

Thales

Thales signalling solutions deployed in four locations

Thales will roll out its SelTrac Communications Based Train Control (CBTC) system in three new cities, with one system recently entering service.

In Hangzhou, China, in its joint venture with Shanghai Electric Company, Thales SEC Transport (TST) recently celebrated Hangzhou Metro Line 16 entering revenue service. The 35.12km line can operate at speeds up to 120km/h and has utilised the SelTrac CBTC technology.

Functions of the signalling system deployed in Hangzhou include automatic train supervision (ATS), triple redundancy, automatic train protection (ATP) for engineering vehicles, and switch protection in intermittent automatic train protect (IATP) mode.

The newline will connect the Hangzhou city centre with the growing Lin’an District, enabling sustainable population growth said Jérôme Bendell, vice president of Thales North Asia and CEO of Thales in China.

“An efficient metro is essential for the commercial success and growth of any great city. Thales is proud to bring a proven expertise and decades of transit infrastructure experience to Hangzhou Line 16 that will contribute to the transportation foundation for Hangzhou’s growth and evolution.”

Three other metropolises have selected Thales CBTC signalling systems for new lines and capacity increases. In Seoul, as part of the modernisation of Incheon Subway Line 2, Thales is working with local Korean signalling company DaeaTi to increase the depot capacity, allowing for the driverless trains to be parked safely.

Thales is also delivering its vehicle on board controller (VOBC) with train contractor Woojin Ind.

In Istanbul, the SelTrac CBTC system will be installed on the new M10 line. This will be the second line in Istanbul with the technology, and will now link Turkey’s second busiest airport with Istanbul and its growing suburbs.

Again delivering as TST, the SelTrac CBTC system will provide the signalling for the new metro line 4 in Nangchang, in eastern China. The new line will be the longest in Nanchang, capital of Jiangxi Province, as well as having the largest number of stations.

Dominique Gaiardo, vice president and managing director for Thales’ urban rail signalling business, said that Thales tailors its solution to the needs of each customer and the requirements of passengers in each city.

“During the Covid-19 period, we are continuing to work together with our global partners in major cities such as Incheon, Istanbul, and Nanchang. Thales is committed to providing state-of-the-art SelTrac CBTC signalling technology.”